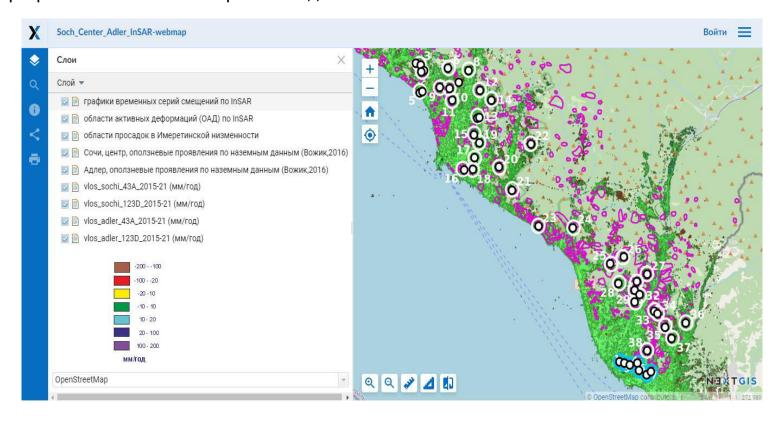
Анализ смещений оползневых склонов в районе Большого Сочи, определенных по снимкам со спутника Sentinel-1 за период 2015-2021гг. .

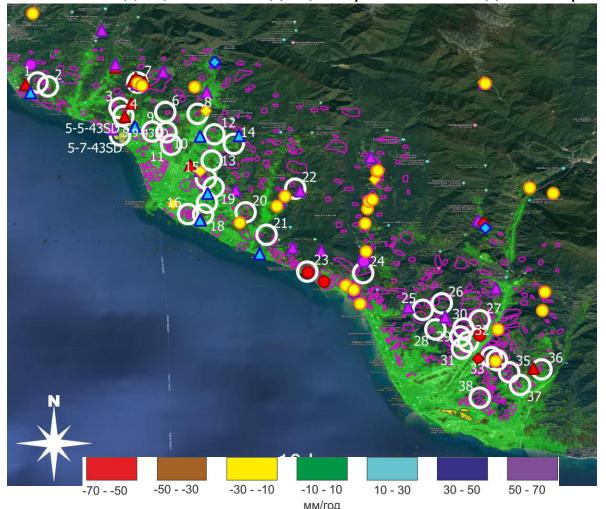
Е.И. Смольянинова, В.О. Михайлов

Институт физики Земли им. О.Ю. Шмидта Российской академии наук (ИФЗ РАН) Москва, 123242, Россия. E-mail: <u>katsmol@mail.ru</u>


Интерактивная карта деформаций поверхности для района Большого Сочи по снимкам S-1 апрель 2015-апрель 2021

(треки 43A и 123D) (Смольянинова и др, 2021)

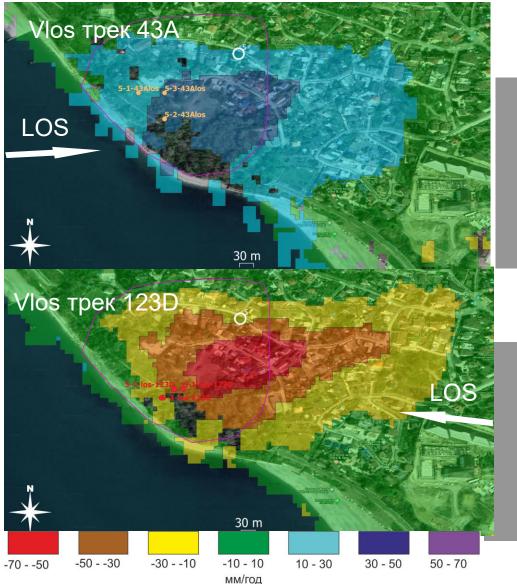
https://adler.nextgis.com/resource/591/display?panel=info.


На карте представлены слои средних значений скоростей смещений в направлении визирования спутника Vlos. Участки, где абсолютные значения скоростей Vlos больше 20 мм/год, области активных деформаций (ОАД) — показаны в соответствии с направлением смещений относительно спутника красным (от спутника) или синим (к спутнику) цветом. Наиболее значительные ОАД (белые круги) промаркированы, и для них во всплывающих окнах

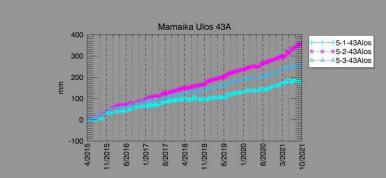
Наиболее значительные ОАД (белые круги) промаркированы, и для них во всплывающих окнах представлены графики временных серий смещений. Карта построена в свободном программном пакете с открытым кодом QGIS

Карта деформаций поверхности для района Большого Сочи по снимкам S-1 апрель 2015-октябрь 2021 (треки 43A и 123D)

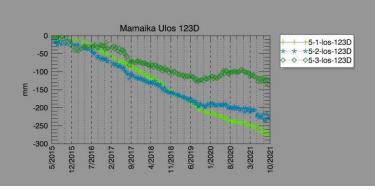
• В данной работе мы представляем обновленную карту деформаций для Центрального и Адлерского районов Большого Сочи, построенную по снимкам с восходящей и нисходящей орбит вплоть до октября 2021г.


Краткое описание карты приведено на предыдущем слайде.

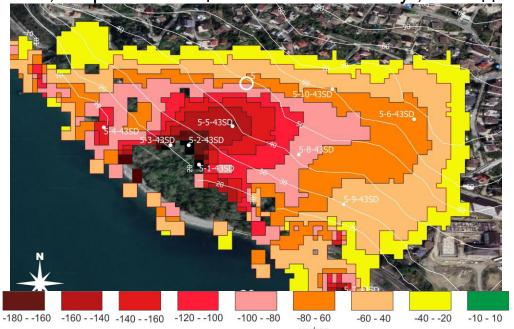
На обновленной карте также показаны поквартально оползневые проявления за период 2019-2021 гг. зафиксированные в сводках ФГБУ «Гидроспецгеология (закрашенные кружки и треугольники)

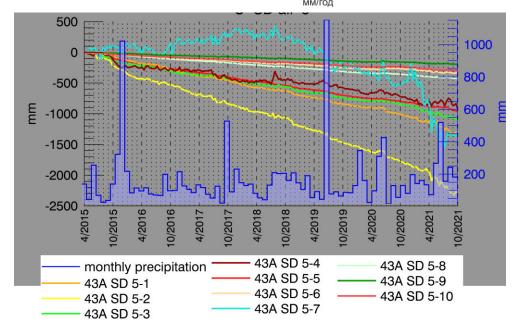

Временные серии смещений

Анализ графиков смещений отражающих объектов во времени показывает, что смещения в разных точках одного и того же оползневого участка, в том числе и находящихся на расстоянии нескольких десятков метров, могут существенно различаться


Мамайка

точки построения графиков – бежевые кружки и метки

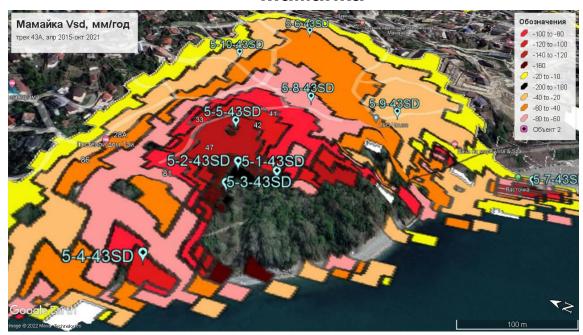

точки построения графиков – красные кружки и метки



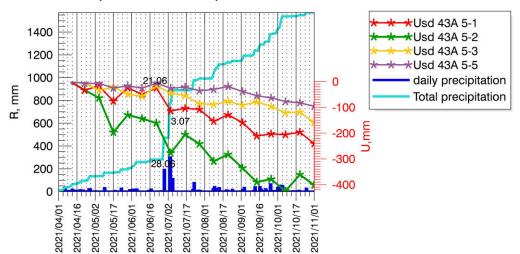
Белые кружки и метки - точки построения графиков Vsd (скорости вниз по склону)

Исследование динамики смещений оползневых участков

Vsd, скорости смещений вниз по склону, мм/год


Мамайка

- Мы исследуем динамику смещений оползневых участков по временным сериям, построенным в точках, где по произведенным оценкам скорости смещений вниз по склону Vsd имеют максимальные значения.
- Таким образом, для каждой ОАД прилагается набор графиков временных серий в различных точках склона, которые затем анализируются совместно с метеоданными о выпадении осадков
- Следует учитывать, что могут быть большими. участки и чем С графиках, показанные на скоростями смещений оползневых масс вдоль склона. Они могут наблюдаться участках на склона, ориентация оползневого которых не позволяет достоверно оценить для них значения Vsd.


Влияние осадков на динамику смещения оползневых масс в различных

точках оползневого склона

Мамайка

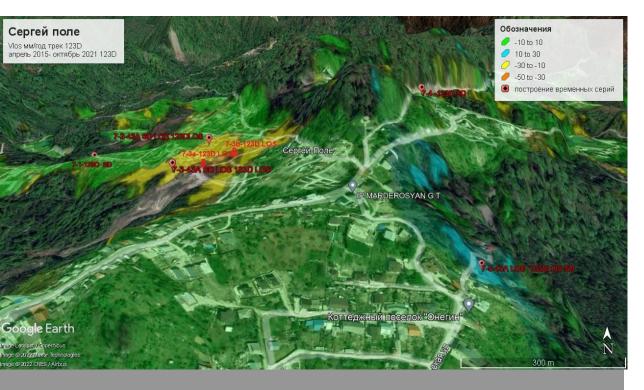
апрель 2021-ноябрь 2021

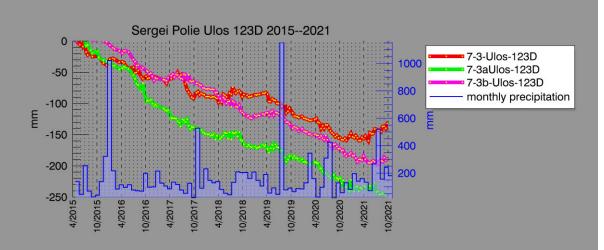
Этот участок хорошо просматривается и с восходящего трека 43A, и с нисходящего 123D. Однако, ориентация склона такова, что достоверно оценить скорости вниз по склону по снимкам с нисходящего трека 123D не удалось.

Зависимость величины смещений на этом участке от выпадающих осадков детально рассмотрена для полугодового временного интервала апрель- октябрь 2021. Динамика выпадения осадков прослеживается по голубой кривой суммарного количества осадков.

Максимальное смещение на рассматриваемом участке наблюдалось в т.5-2 и составило около 400мм за 5 месяцев (зеленая кривая).

В тт. 5-1, 5-3, 5-5 умеренное равномерно выпадающее количество осадков с 01.04 по 26.06 - 300мм за 3 мес практически не приводит к заметным смещениям. Только в т.5-2 в этот период наблюдались смещение около 150мм.

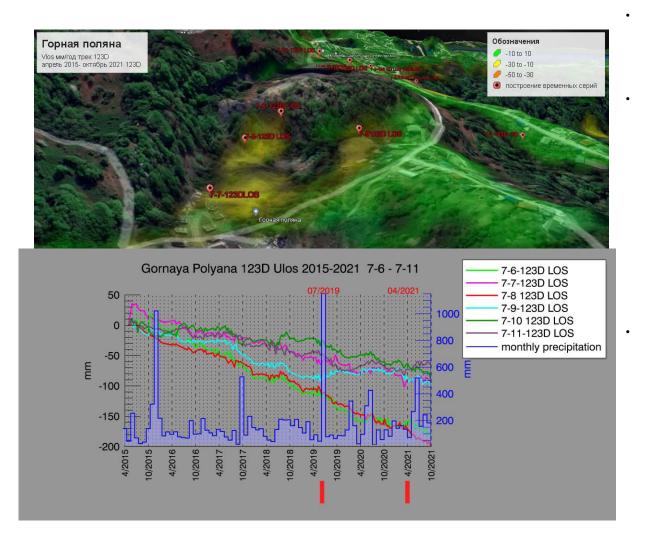

Обильные осадки за короткий период времени с 28.06 по 05.07 (выпало около 600мм) привели с скачкообразным смещениям во всех рассматриваемых точках, особенно существенными оказались смещения в т.5-1 и 5-2. смещение за это время с 21.06 по 03. 07 около 100мм т.е. за 12 дней 10см. А реально не за 12 дней а с 28.06 (когда пошел дождь), т.е.за 5 дней.


Период стабильности с 3.07 по 27.07 соответствует периоду отсутствия осадков с 5.07 по 23.07.

С 03.07 по 17.09 выпало осадков 300мм, и смещения за это время составили то же 100 мм, но за 2,5 мес.

Период достаточно обильных и более или менее равномерно распределенных во времени осадков с 12.09 по 5.10 (400мм за 3недели) с последующим отсутствием осадков соответствует в тт. 5-3 и 5-5 – слабым смещения, а в тт. 5-1 и 5-2 – периодам стабильности.

Влияние осадков на динамику смещения оползневых масс в различных точках оползневого склона


Сергей Поле

Ориентация оползневого склона в Сергей Поле позволяет оценивать смешения оползневых масс только с нисходящей орбиты. При этом достоверно оценить скорости смещений вдоль склона даже только по снимкам с нисходящего трека также не удается. Поэтому анализ динамики смещений проводился только по временным сериям в направлении LOS Ulos трек 123D, что не позволяет проводить сравнительный анализ скоростей движения оползневых различных участках. В таком случае информативным является сравнение периодов активизации и стабилизации.

Так до сентября 2018 года периоды активности и стабильноси в т. 3, 3а и 3б не совпадают: в т.3а оползневые массы движутся в этот период практически непрерывно, в т.3 длительные периоды стабилизации разделены кратковременным периодом активизации с июня по октябрь 2017г., а в т. 3б наоборот два относительно коротких стабильных периода разделены продолжительным существенно более периодом активности. Начиная с сентября 2018 периоды года активизации стабильности а всех рассматриваемых участках становятся одновременными. В целом, начиная с января 2021 г. наблюдается стабилизация на всех участках этого склона. Некоторая активностъ в т.7-3а отмечается после обильных дождей в июле 2021 г.

Влияние осадков на динамику смещения оползневых масс в различных точках оползневого склона

Горная поляна

Утром 5 октября 2021 после дождя, мощный оползень сошел по горному склону на сотню метров, утащив с собой большую часть котеджного поселка «Горная поляна». Мы проанализировали временные серии смещений на трех участках этоо оплзневого склона

До лета 2017 года смещения на всех участках были незначительными. Однако, с лета 2017 года после интенсивных осадков стабильности чередуются с периоды активизацией. Следует отметить сходный характер смещений в т. 7-6 и 7-8: периоды активизации и стабилизации приблизительно одинаковой продолжительности. Однако начиная с лета 2019 после интенсивных дождей в июле массы грунта в т.7-8 двигаться начинают практически непрерывно, в т. 7-7, 7-9, 7-10 и 7-11 движений не наблюдается, а с февраля 2020 г. прекращаются движения и в т.7-6, которые возобновляются после июльских дождей 2021г. Таким образом, сход оползня 5 октября 2021 очевидно является следствием накопления большого количества грунта в районе т. 7-6 , который сошел после обильных дождей.

Изменение поведения на оползневом склоне в интервале времени, предшествующем сходу оползня отмечено красными линиями,

ВЫВОДЫ

- Построенная по снимкам со спутника Sentinel-1A карта деформаций поверхности позволяет выделять области активных деформаций поверхности (ОАД) за период наблюдения с апреля 2015 по октябрь 2021.
- В зонах ОАД совместный анализ кривых временных серий с динамикой выпавших осадков позволяет выявлять наиболее опасные участки оползневого склона и в ряде случаев прогнозировать поведение оползневых масс в зависимости от выпадающих садков.
- Степень опасности ОАД определяется не только величиной средней скорости Vlos, а наличием и частотой повторяемости перегибов графиков временных серий, т.н. активных точек.